APS Logo

Cavity-photon induced state transitions in a coupled Fluxonium qubit system

ORAL

Abstract

Superconducting qubits are a subject of intense research as a platform for scalable quantum computing. While transmon qubits have received a lot of attention, the less ubiquitous Fluxonium qubit has been shown to have long life-times and gates unlimited by level anharmonicity [1]. Despite this, little research has been put into studying multi-Fluxonium devices. Here, one of the difficulties is understanding how their rich level structure can make them prone to measurement photons inducing transitions out of the qubit subspace [2]. We present a systematic study of a system comprising two capacitively coupled Fluxonium qubits sharing the same read-out cavity. By tracking the state dependent transmission of the read-out pulse, we determine the transition rates from state i to state j of the coupled system using a forward-backward analysis [3] to characterize these cavity induced transitions. By varying the flux bias of the system and the population of the cavity, we characterize the fidelity of this read-out.

[1] L.B. Nguyen et al., Phys. Rev. X 9 041041, 2019
[2] D. Sank et al., Phys. Rev. Lett. 117 190503, 2016
[3] T. Rybarczyk et al., Physical Review A 91 062116, 2015

Presenters

  • Jeremy Stevens

    ENS de Lyon, Ecole Normale Superieure de Lyon

Authors

  • Jeremy Stevens

    ENS de Lyon, Ecole Normale Superieure de Lyon

  • Alexis Jouan

    ENS de Lyon

  • Nathanael Cottet

    Yale University, Physics, Yale University, Ecole Normale Superieure de Lyon

  • Long B Nguyen

    University of Maryland, College Park, Physics, University of California, Berkeley, University of Maryland

  • Aaron Somoroff

    University of Maryland, College Park, University of Maryland

  • Quentin Ficheux

    University of Maryland, College Park, University of Maryland, Ecole Normale Superieure de Lyon, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon,France

  • Audrey Bienfait

    University of Chicago, Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, ENS de Lyon, Ecole Normale Superieure de Lyon, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon,France

  • Vladimir Manucharyan

    University of Maryland, College Park, Department of Physics, University of Maryland, University of Maryland

  • Benjamin Huard

    Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, ENS de Lyon, ENS Lyon, Ecole Normale Superieure de Lyon, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon, France, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342 Lyon,France