Engineering Entangled Photon Pairs with Metal-Organic Framework Materials
ORAL
Abstract
The discovery and design of novel materials with competitive optical frequency conversion efficiencies can accelerate the development of scalable photonic quantum technologies. Metal-organic framework (MOF) materials have a large potential for quantum optics, given the combinatorial number of possibilities for fabrication of MOFs with large nonlinearities [1]. To enable the discovery of MOFs for quantum technologies, scalable computational assessment tools are needed. We develop a multi-scale method to study the wavefunction of entangled photon pairs generated by selected non-centrosymmetric MOF crystals via spontaneous parametric down-conversion [2]. Starting from a crystal structure, we predict the shape of the intensity correlation function for coincidence detection of energy-time entangled photon pairs. The predicted optical nonlinearities and pair correlation times are comparable to inorganic crystal standards such as KDP. Our work offers insights on the structure-property relationships relevant for entangled photon generation with MOFs, paving the way for the automated discovery of molecular materials for optical quantum technology.
[1] C. Wang et al. Chem. Rev. 112, 1084, 2012.
[2] R. Fritz, Y.J. Colon, F. Herrera, DOI:10.26434/chemrxiv.12997007.v1, 2020.
[1] C. Wang et al. Chem. Rev. 112, 1084, 2012.
[2] R. Fritz, Y.J. Colon, F. Herrera, DOI:10.26434/chemrxiv.12997007.v1, 2020.
–
Presenters
-
Ruben Fritz
Univ de Santiago de Chile
Authors
-
Ruben Fritz
Univ de Santiago de Chile
-
Yamil Colón
University of Notre Dame
-
Felipe Herrera
Univ de Santiago de Chile, Universidad de Santiago de Chile