AI Materials Design and Discovery III
FOCUS · E60 · ID: 381708
Presentations
-
Capturing and Leveraging Computational and Experimental Data in Materials Physics
Invited
–
Presenters
-
Maria Chan
Argonne National Laboratory, Center for Nanoscale Materials, Argonne National Laboratory, Materials Research Center, Northwestern University
Authors
-
Maria Chan
Argonne National Laboratory, Center for Nanoscale Materials, Argonne National Laboratory, Materials Research Center, Northwestern University
-
-
Physics-Informed Data-Driven Approach for Optimizing Electrocaloric Cooling
ORAL
–
Presenters
-
Jie Gong
Carnegie Mellon Univ, Mechanical Engineering, Carnegie Mellon University
Authors
-
Jie Gong
Carnegie Mellon Univ, Mechanical Engineering, Carnegie Mellon University
-
Rohan Mehta
Carnegie Mellon Univ
-
Alan McGaughey
Carnegie Mellon Univ, Mechanical Engineering, Carnegie Mellon University
-
-
First-Principles Prediction of Substrate Induced Changes in Layered Nanomaterials via Physics-Based Machine Learning
ORAL
–
Presenters
-
Artem Pimachev
University of Colorado, Boulder
Authors
-
Sanghamitra Neogi
University of Colorado, Boulder
-
Artem Pimachev
University of Colorado, Boulder
-
-
Featureless adaptive optimization accelerates functional electronic materials design
ORAL
–
Presenters
-
Yiqun Wang
Northwestern University
Authors
-
Yiqun Wang
Northwestern University
-
James M Rondinelli
Northwestern University, McCormick School of Engineering, Department of Materials Science and Engineering, Northwestern University, Department of Materials Science and Engineering, Northwestern University
-
-
Benchmarking Coordination Number Prediction Algorithms on Inorganic Crystal Structures
ORAL
–
Presenters
-
Hillary Pan
Energy Technologies Area, Lawrence Berkeley National Laboratory
Authors
-
Hillary Pan
Energy Technologies Area, Lawrence Berkeley National Laboratory
-
Alex Ganose
Energy Technologies Area, Lawrence Berkeley National Laboratory
-
Matthew Horton
Materials Science & Engineering, University of California, Berkeley
-
Muratahan Aykol
Toyota Research Institute, Energy Technologies Area, Lawrence Berkeley National Laboratory
-
Kristin Persson
Materials Science & Engineering, University of California, Berkeley, Lawrence Berkeley National Laboratory
-
Nils E.R. Zimmermann
Energy Technologies Area, Lawrence Berkeley National Laboratory
-
Anubhav Jain
Energy Technologies Area, Lawrence Berkeley National Laboratory
-
-
Prediction of atomization energies using entropic data representation and machine learning
ORAL
–
Presenters
-
Michael De La Rosa
University of Texas at El Paso
Authors
-
Michael De La Rosa
University of Texas at El Paso
-
Jorge Munoz
University of Texas at El Paso, Physics, University of Texas at El Paso
-
-
Highly Accurate Machine Learning Point Group Classifier for Crystals
ORAL
–
Presenters
-
Abdulmohsen Alsaui
King Fahd Univ KFUPM
Authors
-
Abdulmohsen Alsaui
King Fahd Univ KFUPM
-
Saad Alqahtani
King Fahd Univ KFUPM
-
Faisal Mumtaz
Hamad Bin Khalifa University
-
Ibrahim Alsayoud
King Fahd Univ KFUPM
-
Mohammed Al Ghadeer
King Fahd Univ KFUPM
-
Ali Muqaibel
King Fahd Univ KFUPM
-
Sergey Rashkeev
Hamad Bin Khalifa University
-
Ahmer Baloch
Hamad Bin Khalifa University
-
Fahhad Alharbi
King Fahd Univ KFUPM
-
-
CRYSPNet: Machine Learning Tool for Crystal Structure Predictions
ORAL
–
Presenters
-
haotong liang
University of Maryland, College Park
Authors
-
haotong liang
University of Maryland, College Park
-
Valentin Stanev
University of Maryland, College Park
-
Aaron Kusne
National Institute of Standards and Technology, University of Maryland, College Park
-
Ichiro Takeuchi
University of Maryland, College Park, Department of Materials Science, University of Maryland, Department of Materials Science and Engineering, University of Maryland
-
-
Machine learning materials properties for small datasets
ORAL
–
Presenters
-
Pierre-Paul De Breuck
Universite catholique de Louvain
Authors
-
Pierre-Paul De Breuck
Universite catholique de Louvain
-
Geoffroy Hautier
Universite catholique de Louvain
-
Gian-Marco Rignanese
Universite catholique de Louvain
-
-
Identifying "materials genes" by symbolic regression: The hierarchical SISSO approach
ORAL
–
Presenters
-
Lucas Foppa
Fritz Haber Institute
Authors
-
Lucas Foppa
Fritz Haber Institute
-
Thomas Alexander Reichmanis Purcell
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz Haber Institute, Fritz-Haber Institute
-
Sergey V. Levchenko
Skoltech
-
Matthias Scheffler
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Berlin, NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber-Institut der MPG, 14195 Berlin, DE, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Fritz Haber Institute, Fritz Haber Institute Berlin, Fritz Haber Institute of the Max Planck Society, Berlin, Germany, Fritz-Haber Institute
-
Luca M. Ghiringhelli
NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Berlin, NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, NOMAD Laboratory, Fritz-Haber Institute of Max-Planck Society, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Fritz Haber Institute, Fritz-Haber Institute
-
-
A massive dataset of synthesis-friendly hypothetical polymers
ORAL
–
Presenters
-
Arunkumar Rajan
Georgia Institute of Technology
Authors
-
Arunkumar Rajan
Georgia Institute of Technology
-
Chiho Kim
Georgia Institute of Technology, School of Materials Science and Engineering, Georgia Institute of Technology
-
Christopher Kuenneth
Georgia Institute of Technology
-
Deepak Kamal
Georgia Tech, Georgia Institute of Technology, Georgia Inst of Tech
-
Rishi Gurnani
Georgia Institute of Technology, Georgia Inst of Tech
-
Rohit Batra
Georgia Institute of Technology
-
Rampi Ramprasad
Georgia Inst of Tech, Georgia Tech, Georgia Institute of Technology, School of Materials Science and Engineering, Georgia Institute of Technology
-
-
Bayesian Optimization Approach for Discovery of High-Capacity Small-Molecule Adsorption in Metal-Organic Frameworks
ORAL
–
Presenters
-
Eric Taw
Chemical Engineering, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory
Authors
-
Eric Taw
Chemical Engineering, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory
-
Jeffrey Neaton
Lawrence Berkeley National Laboratory, Physics, University of California at Berkeley, Physics, University of California, Berkeley, University of California, Berkeley; Lawrence Berkeley National Lab; Kavli Energy NanoScience Institute at Berkeley, Department of Physics, University of California Berkeley, University of California, Berkeley, Physics, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Molecular Foundry, Lawrence Berkeley National Laboratory, University of California Berkeley
-
-
Data-driven studies of the magnetic anisotropy of two-dimensional magnetic materials
ORAL
–
Presenters
-
Trevor Rhone
Physics, Harvard University, Physics, Rensselaer Polytechnic Institute
Authors
-
Yiqi Xie
Physics, Harvard University
-
Trevor Rhone
Physics, Harvard University, Physics, Rensselaer Polytechnic Institute
-
Georgios Tritsaris
Physics, Harvard University, School of Engineering and Applied Sciences, Harvard University
-
Oscar Grånäs
Uppsala University, Physics, Uppsala University
-
Efthimios Kaxiras
Harvard University, Department of Physics, Harvard University, Physics, Harvard University
-