APS Logo

AI Materials Design and Discovery III

FOCUS · E60 · ID: 381708






Presentations

  • Benchmarking Coordination Number Prediction Algorithms on Inorganic Crystal Structures

    ORAL

    Presenters

    • Hillary Pan

      Energy Technologies Area, Lawrence Berkeley National Laboratory

    Authors

    • Hillary Pan

      Energy Technologies Area, Lawrence Berkeley National Laboratory

    • Alex Ganose

      Energy Technologies Area, Lawrence Berkeley National Laboratory

    • Matthew Horton

      Materials Science & Engineering, University of California, Berkeley

    • Muratahan Aykol

      Toyota Research Institute, Energy Technologies Area, Lawrence Berkeley National Laboratory

    • Kristin Persson

      Materials Science & Engineering, University of California, Berkeley, Lawrence Berkeley National Laboratory

    • Nils E.R. Zimmermann

      Energy Technologies Area, Lawrence Berkeley National Laboratory

    • Anubhav Jain

      Energy Technologies Area, Lawrence Berkeley National Laboratory

    View abstract →

  • Highly Accurate Machine Learning Point Group Classifier for Crystals

    ORAL

    Presenters

    • Abdulmohsen Alsaui

      King Fahd Univ KFUPM

    Authors

    • Abdulmohsen Alsaui

      King Fahd Univ KFUPM

    • Saad Alqahtani

      King Fahd Univ KFUPM

    • Faisal Mumtaz

      Hamad Bin Khalifa University

    • Ibrahim Alsayoud

      King Fahd Univ KFUPM

    • Mohammed Al Ghadeer

      King Fahd Univ KFUPM

    • Ali Muqaibel

      King Fahd Univ KFUPM

    • Sergey Rashkeev

      Hamad Bin Khalifa University

    • Ahmer Baloch

      Hamad Bin Khalifa University

    • Fahhad Alharbi

      King Fahd Univ KFUPM

    View abstract →

  • CRYSPNet: Machine Learning Tool for Crystal Structure Predictions

    ORAL

    Presenters

    • haotong liang

      University of Maryland, College Park

    Authors

    • haotong liang

      University of Maryland, College Park

    • Valentin Stanev

      University of Maryland, College Park

    • Aaron Kusne

      National Institute of Standards and Technology, University of Maryland, College Park

    • Ichiro Takeuchi

      University of Maryland, College Park, Department of Materials Science, University of Maryland, Department of Materials Science and Engineering, University of Maryland

    View abstract →

  • Machine learning materials properties for small datasets

    ORAL

    Presenters

    • Pierre-Paul De Breuck

      Universite catholique de Louvain

    Authors

    • Pierre-Paul De Breuck

      Universite catholique de Louvain

    • Geoffroy Hautier

      Universite catholique de Louvain

    • Gian-Marco Rignanese

      Universite catholique de Louvain

    View abstract →

  • Identifying "materials genes" by symbolic regression: The hierarchical SISSO approach

    ORAL

    Presenters

    • Lucas Foppa

      Fritz Haber Institute

    Authors

    • Lucas Foppa

      Fritz Haber Institute

    • Thomas Alexander Reichmanis Purcell

      NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz Haber Institute, Fritz-Haber Institute

    • Sergey V. Levchenko

      Skoltech

    • Matthias Scheffler

      NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Berlin, NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber-Institut der MPG, 14195 Berlin, DE, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Fritz Haber Institute, Fritz Haber Institute Berlin, Fritz Haber Institute of the Max Planck Society, Berlin, Germany, Fritz-Haber Institute

    • Luca M. Ghiringhelli

      NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, Berlin, NOMAD Laboratory, Fritz Haber Institute of the Max Planck Society, NOMAD Laboratory, Fritz-Haber Institute of Max-Planck Society, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Fritz Haber Institute, Fritz-Haber Institute

    View abstract →

  • A massive dataset of synthesis-friendly hypothetical polymers

    ORAL

    Presenters

    • Arunkumar Rajan

      Georgia Institute of Technology

    Authors

    • Arunkumar Rajan

      Georgia Institute of Technology

    • Chiho Kim

      Georgia Institute of Technology, School of Materials Science and Engineering, Georgia Institute of Technology

    • Christopher Kuenneth

      Georgia Institute of Technology

    • Deepak Kamal

      Georgia Tech, Georgia Institute of Technology, Georgia Inst of Tech

    • Rishi Gurnani

      Georgia Institute of Technology, Georgia Inst of Tech

    • Rohit Batra

      Georgia Institute of Technology

    • Rampi Ramprasad

      Georgia Inst of Tech, Georgia Tech, Georgia Institute of Technology, School of Materials Science and Engineering, Georgia Institute of Technology

    View abstract →

  • Bayesian Optimization Approach for Discovery of High-Capacity Small-Molecule Adsorption in Metal-Organic Frameworks

    ORAL

    Presenters

    • Eric Taw

      Chemical Engineering, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory

    Authors

    • Eric Taw

      Chemical Engineering, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory

    • Jeffrey Neaton

      Lawrence Berkeley National Laboratory, Physics, University of California at Berkeley, Physics, University of California, Berkeley, University of California, Berkeley; Lawrence Berkeley National Lab; Kavli Energy NanoScience Institute at Berkeley, Department of Physics, University of California Berkeley, University of California, Berkeley, Physics, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Molecular Foundry, Lawrence Berkeley National Laboratory, University of California Berkeley

    View abstract →

  • Data-driven studies of the magnetic anisotropy of two-dimensional magnetic materials

    ORAL

    Presenters

    • Trevor Rhone

      Physics, Harvard University, Physics, Rensselaer Polytechnic Institute

    Authors

    • Yiqi Xie

      Physics, Harvard University

    • Trevor Rhone

      Physics, Harvard University, Physics, Rensselaer Polytechnic Institute

    • Georgios Tritsaris

      Physics, Harvard University, School of Engineering and Applied Sciences, Harvard University

    • Oscar Grånäs

      Uppsala University, Physics, Uppsala University

    • Efthimios Kaxiras

      Harvard University, Department of Physics, Harvard University, Physics, Harvard University

    View abstract →