APS Logo

Quantized Conductance in a One-Dimensional Ballistic Oxide Nanodevice

ORAL

Abstract

The electric-field effect control of two-dimensional electron gases (2DEG) has allowed nanoscale electron quantum transport to be explored in semiconductors. Structures based on transition metal oxides have electronic states that favour the emergence of novel quantum orders that are absent in conventional semiconductors and the 2DEG formed at a LaAlO3/SrTiO3 interface —a structure in which superconductivity and spin–orbit coupling can coexist— is a promising platform to develop devices for spintronics and topological electronics. However, field-effect control of the properties of this interface at the nanoscale remains challenging. In this presentation we show that a quantum point contact can be formed in a LaAlO3/SrTiO3 interface through electrostatic confinement of the 2DEG using a split gate. Our device exhibits a quantized conductance due to ballistic transport in a controllable number of one-dimensional conducting channels. Under a magnetic field, the direct observation of the Zeeman splitting between spin-polarized bands allows the determination of the Landé g-factor, whose value differs strongly from that of free electrons. Through source–drain voltage measurements, were also performed a spectroscopic investigation of the 3d energy levels inside the quantum point contact.

Presenters

  • Alexis Jouan

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University

Authors

  • Alexis Jouan

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University

  • G. Singh

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University

  • Edouard Lesne

    Quantum Nanoscience, TU Delft, Delft University of Technology, Unité Mixte de Physique CNRS Thales, Paris-Sud, Université Paris-Saclay

  • Diogo Vaz

    Unité Mixte de Physique CNRS/Thales, Universite Paris-Saclay, Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France, Unité Mixte de Physique CNRS Thales, Paris-Sud, Université Paris-Saclay

  • Manuel Bibes

    CNRS/THALES, Unité Mixte de Physique CNRS/Thales, Universite Paris-Saclay, Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France, Unité Mixte de Physique CNRS Thales, Paris-Sud, Université Paris-Saclay

  • Agnès Barthélémy

    CNRS/THALES, Unité Mixte de Physique CNRS/Thales, Universite Paris-Saclay, Unité Mixte de Physique CNRS Thales, Paris-Sud, Université Paris-Saclay

  • Christian Ulysse

    Center for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud/ Université Paris-Saclay, Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud/Université Paris-Saclay, Boulevard Thomas Gobert, Palaiseau, France

  • Daniela Stornaiuolo

    CNR-SPIN, Complesso Monte S. Angelo

  • Marco Salluzo

    CNR-SPIN, Complesso Monte S. Angelo

  • Simon Hurand

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University

  • Jerome Lesueur

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University, Laboratoire de Physique et d’Etude des Matériaux, CNRS, ESPCI Paris

  • Cheryl Feuillet-Palma

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University, Laboratoire de Physique et d’Etude des Matériaux, CNRS, ESPCI Paris

  • Nicolas Bergeal

    Laboratoire de Physique et d'Étude des Matériaux, ESPCI-Paris-CNRS-UPMCPSL Research University, Laboratoire de Physique et d’Etude des Matériaux, CNRS, ESPCI Paris