APS Logo

Accurate spin and valley state identification in silicon double quantum dots

ORAL

Abstract

To read the state of silicon spin qubits, the mechanism that has provided highest fidelity is spin-to-charge conversion via Pauli spin blockade [1]. However, given the valley degree of freedom in silicon quantum dots, which can lead to complex energy spectra, accurate identification of the spin states involved in Pauli spin blockade is a key requirement for reliable readout and operation of silicon spin qubits.

Here, we expand the standard description of Pauli spin blockade in a double quantum dots (DQD) to include multiparticle states with large total spin angular momentum S. Using gate-based dispersive readout and magnetospectroscopy, we show successive steps of spin blockade and spin-blockade lifting involving spin states up to S=3 as well as the formation of a novel spin-quintet state [2]. Furthermore, we demonstrate the use of this technique for discerning whether the valleys involved in DQD interdot transitions are of equal or different quantum number.

[1] Harvey-Collard et al, Phys. Rev. X 8, 021046 (2018)
[2] Lundberg et al, Phys. Rev. X 10, 041010 (2020)

Presenters

  • Theodor Lundberg

    Cavendish Laboratory, University of Cambridge

Authors

  • Theodor Lundberg

    Cavendish Laboratory, University of Cambridge

  • David J. Ibberson

    Quantum Engineering Technology Labs, University of Bristol

  • Jing LI

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Louis HUTIN

    CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Benoit Bertrand

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Chang-Min Lee

    Department of Materials Science and Metallurgy, University of Cambridge

  • David J. Niegemann

    Institu Néel, CNRS, CNRS, Grenoble INP, Institut Néel, Université Grenoble Alpes

  • Matias Urdampilleta

    Institu Néel, CNRS, CNRS, Grenoble INP, Institut Néel, Université Grenoble Alpes

  • Nadia A. Stelmashenko

    Department of Materials Science and Metallurgy, University of Cambridge

  • Tristan Meunier

    Institu Néel, CNRS, CNRS, Grenoble INP, Institut Néel, Université Grenoble Alpes

  • Jason Robinson

    Department of Materials Science and Metallurgy, University of Cambridge

  • Maud Vinet

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Lisa A. Ibberson

    Hitachi Cambridge Laboratory, Hitachi Cambridge Laboratory, University of Cambridge, Hitachi Cambridge Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

  • Yann-Michel Niquet

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, Université Grenoble Alpes, CEA, IRIG, MEM-L Sim, F-38000 Grenoble, France

  • M Fernando Gonzalez-Zalba

    Quantum Motion Technologies, Hitachi Cambridge Laboratory, Hitachi Cambridge Laboratory, University of Cambridge, Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom