Accurate spin and valley state identification in silicon double quantum dots

ORAL

Abstract

To read the state of silicon spin qubits, the mechanism that has provided highest fidelity is spin-to-charge conversion via Pauli spin blockade [1]. However, given the valley degree of freedom in silicon quantum dots, which can lead to complex energy spectra, accurate identification of the spin states involved in Pauli spin blockade is a key requirement for reliable readout and operation of silicon spin qubits.

Here, we expand the standard description of Pauli spin blockade in a double quantum dots (DQD) to include multiparticle states with large total spin angular momentum S. Using gate-based dispersive readout and magnetospectroscopy, we show successive steps of spin blockade and spin-blockade lifting involving spin states up to S=3 as well as the formation of a novel spin-quintet state [2]. Furthermore, we demonstrate the use of this technique for discerning whether the valleys involved in DQD interdot transitions are of equal or different quantum number.

[1] Harvey-Collard et al, Phys. Rev. X 8, 021046 (2018)
[2] Lundberg et al, Phys. Rev. X 10, 041010 (2020)

Presenters

  • Theodor Lundberg

    Cavendish Laboratory, University of Cambridge

Authors

  • Theodor Lundberg

    Cavendish Laboratory, University of Cambridge

  • David J. Ibberson

    Quantum Engineering Technology Labs, University of Bristol

  • Jing LI

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Louis HUTIN

    CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Benoit Bertrand

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Chang-Min Lee

    Department of Materials Science and Metallurgy, University of Cambridge

  • David J. Niegemann

    Institu Néel, CNRS, CNRS, Grenoble INP, Institut Néel, Université Grenoble Alpes

  • Matias Urdampilleta

    Institu Néel, CNRS, CNRS, Grenoble INP, Institut Néel, Université Grenoble Alpes

  • Nadia A. Stelmashenko

    Department of Materials Science and Metallurgy, University of Cambridge

  • Tristan Meunier

    Institu Néel, CNRS, CNRS, Grenoble INP, Institut Néel, Université Grenoble Alpes

  • Jason Robinson

    Department of Materials Science and Metallurgy, University of Cambridge

  • Maud Vinet

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Lisa A. Ibberson

    Hitachi Cambridge Laboratory, Hitachi Cambridge Laboratory, University of Cambridge, Hitachi Cambridge Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

  • Yann-Michel Niquet

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, Université Grenoble Alpes, CEA, IRIG, MEM-L Sim, F-38000 Grenoble, France

  • M Fernando Gonzalez-Zalba

    Quantum Motion Technologies, Hitachi Cambridge Laboratory, Hitachi Cambridge Laboratory, University of Cambridge, Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom