APS Logo

Spin Readout of a CMOS Quantum Dot by Gate Reflectometry and Spin-Dependent Tunneling

ORAL

Abstract

We report the measurement of the electron spin orientation in a singly-occupied gate-defined quantum dot, fabricated using CMOS compatible processes at the 300 mm wafer-scale [1]. For readout, we employ spin-dependent tunnelling [2] combined with a low-footprint single-lead quantum dot charge sensor, measured using radiofrequency gate reflectometry [3]. We demonstrate spin readout, obtaining valley splittings in the range 0.5-0.7 meV and a maximum electron spin relaxation time (T1) of 9 ± 3 s at 1 Tesla. These long lifetimes indicate that the silicon nanowire geometry and fabrication processes possess considerable promise for qubit devices, while this spin-readout method is well-suited to scalable architectures. We will discuss progress towards integrating such spin-readout with quantum-limited amplifiers [4].

[1] Nat. Commun. 7, 13575 (2016)
[2] Nature 430, 431 (2004)
[3] Nat. Commun. 6, 6084 (2015)
[4] Phys. Rev. Lett. 124, 67701 (2020)

Presenters

  • Virginia Ciriano-Tejel

    London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom; Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom

Authors

  • Virginia Ciriano-Tejel

    London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom; Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom

  • Michael A. Fogarty

    London Center Nanotechnology, University College London, Quantum Motion Technologies, London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom; Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom

  • Simon Schaal

    London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom; Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom

  • Louis HUTIN

    CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Benoit Bertrand

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Lisa A. Ibberson

    Hitachi Cambridge Laboratory, Hitachi Cambridge Laboratory, University of Cambridge, Hitachi Cambridge Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

  • M Fernando Gonzalez-Zalba

    Quantum Motion Technologies, Hitachi Cambridge Laboratory, Hitachi Cambridge Laboratory, University of Cambridge, Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdom

  • Jing LI

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Yann-Michel Niquet

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, Université Grenoble Alpes, CEA, IRIG, MEM-L Sim, F-38000 Grenoble, France

  • Maud Vinet

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • John J. L. Morton

    University College London, London Center Nanotechnology, London Centre for Nanotechnology, University College London, University College London, Quantum Motion Technologies, London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom; Quantum Motion Technologies, Nexus, Discovery Way, Leeds, LS2 3AA, United Kingdo