APS Logo

Reflectometry of charge transitions in a silicon quadruple dot

ORAL

Abstract

Silicon is considered a promising candidate for realizing large qubit processors [1], making quantum dots in silicon nanowire transistors, fabricated in industrial cleanrooms on 300-mm wafers, particularly attractive [2]. We perform gate-based reflectometry measurements of various charge states in a foundry-fabricated two-dimensional quadruple quantum dot. From a wiring perspective, the low number of control channels (one gate-electrode per dot and global top and back gates) is desirable, provided that tunnel couplings are adjustable to allow controlled single-electron movements [3] and single-shot reflectometry readout.
Using native and virtual gate voltages, we demonstrate charge sensing and dispersive read-out down to the last electron in each dot, and show an adjustability of interdot tunneling rates using the top gate. We support our findings with k x p modeling and simulations based on a constant interaction model, and experimentally demonstrate single-shot detection of interdot charge transitions with unity signal-to-noise ratios at bandwidths exceeding 1 MHz.
[1] Vandersypen et al., npj Quant.Inf. 3, 34 (2017)
[2] Maurand et al., Nat.Comm. 7, 13575 (2016)
[3] Ansaloni et al., arXiv:2004.00894 (2020)

Presenters

  • Heorhii Bohuslavskyi

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

Authors

  • Heorhii Bohuslavskyi

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

  • Fabio Ansaloni

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

  • Anasua Chatterjee

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

  • Federico Fedele

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

  • Torbjørn Rasmussen

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

  • Bertram Brovang

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

  • Jing LI

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Louis HUTIN

    CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Benjamin Venitucci

    Université Grenoble Alpes, CEA, IRIG, MEM-L Sim, F-38000 Grenoble, France

  • Benoit Bertrand

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Maud Vinet

    Leti, CEA, CEA/LETI-MINATEC, CEA-Grenoble, CEA Leti, CEA, Grenoble, CEA, LETI, Minatec Campus, F-38054 Grenoble, France

  • Yann-Michel Niquet

    Université Grenoble Alpes, CEA, IRIG, MEM/L_Sim, Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, F-38000, Grenoble, France, Université Grenoble Alpes, CEA, IRIG, MEM-L Sim, F-38000 Grenoble, France

  • Ferdinand Kuemmeth

    Univ of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark