Microfluidics & Algorithm for Comprehensive Small Volume Blood Diagnostics via Rapid Solidification of μL Drops into Homogeneous Thin Film Solid Films and XRF
ORAL
Abstract
Using microscopy, Ion Beam Analysis, and X-Ray Fluorescence (XRF), the present work studies blood drop microfluidics and rapid blood solidification. The hyper-hydrophilic coating, HemaDrop™, solidifies 10 µL-sized blood drops into Homogeneous Thin Solid Films (HTSFs). A new blood collection and solidification device, InnovaStrip™ [1], allows HTSFs to be analyzed via solid-state techniques for electrolytes and metals composition to ± 10%.
To address issues in XRF automated software, including background fit errors, Fast Accurate Blood Analysis (FABA), a new XRF algorithm specific to blood analysis, is implemented in a mobile app, Fast Hand-held Analysis for XRF. FABA makes BD portable when paired with Hand-Held XRF. It allows for data conversion from atomic % composition into mg/dL using built-in calibration HTSFs, integrated into the InnovaStrip™ design. FABA yields comprehensive BD using μLs of blood with accuracy and reproducibility to ± 10%.
[1] Herbots et al. Int. US. Pat. Pend (2020).
–
Presenters
-
Thilina Balasooriya
Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University
Authors
-
Thilina Balasooriya
Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University
-
Wesley Peng
Physics, Arizona State University, Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University
-
Nikhil Suresh
Physics, Arizona State University, Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University
-
Aashi R Gurijala
Physics, Arizona State University, Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University
-
Mohammed Sahal
Physics, Arizona State University, SiO2 Innovates LLC, Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, SiO2 Innovates, LLC
-
Eric Culbertson
Physics and Eyring Materials Center, Arizona State University
-
Robert J Culbertson
Physics, Arizona State University, Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University
-
Nicole Herbots
Physics, Arizona State University, Dpt of Physics/Eyring Materials Center, Arizona State University, Physics Dpt/Eyring Materials Cr, Arizona State University, Physics and Eyring Materials Center, Arizona State University