APS Logo

Quantifying Losses in Transmon Qubits

ORAL

Abstract

Reducing losses in superconducting qubit circuits is critical for enabling the development of large-scale quantum computing architectures. This task is especially challenging in the face of variability resulting from device-to-device differences and fluctuating device properties. We apply statistical characterization of sets of superconducting resonators and transmon qubits to overcome variability and quantify loss contributions from a variety of sources such as surface and bulk dielectrics, packaging, and nonequilibrium quasiparticles. As part of this approach, we develop the fabrication processes and EM modeling techniques necessary for accurately modeling dielectric losses. Through this study, we seek to develop a model of qubit losses that allows for iterative improvement in device coherences and consistency.

Presenters

  • Greg Calusine

    MIT Lincoln Lab, MIT Lincoln Laboratory

Authors

  • Greg Calusine

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Wayne Woods

    MIT Lincoln Lab, MIT Lincoln Laboratory

  • Alexander Melville

    MIT Lincoln Laboratory, MIT Lincoln Lab, MIT Lincoln Laboratories, Massachusetts Institute of Technology (MIT) Lincoln Laboratory

  • Kyle Serniak

    MIT Lincoln Lab, Yale University, MIT Lincoln Laboratory, Applied Physics, Yale University

  • David K Kim

    MIT Lincoln Laboratory, MIT Lincoln Lab, MIT-Lincoln Lab, MIT Lincoln Laboratories, Lincoln Laboratory, Massachusetts Institute of Technology (MIT), Massachusetts Institute of Technology (MIT) Lincoln Laboratory

  • Jonilyn Yoder

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Institute of Technology (MIT) Lincoln Laboratory

  • William Oliver

    Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Department of Physics, MIT Lincoln Laboratory, Massachusetts Institute of Techn, MIT Lincoln Lab, MIT Lincoln Laboratory, MIT Lincoln Laboratory, Massachusetts Institute of Technology, Department of Physics, Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MIT, Department of Electrical Engineering and Computer Science, Department of Physics, Massachusetts Institute of Technology; MIT Lincoln Laboratory, Department of Electrical Engineering and Computer Science, Department of Physics, MIT Lincoln Laboratory, Massachusetts Institute of Technology, Massachusetts Institute of Technology, Research Laboratory of Electronics, Massachusetts Institute of Technology, Research Laboratory of Electronics, Department of Electrical Engineering & Computer Science, Department of Physics, Massachusetts Institute of Technology and MIT Lincoln Labo, Physics, MIT, MIT-Lincoln Lab, MIT Lincoln Laboratories, Research Laboratory of Electronics, Department of Physics, Department of Electrical Engineering and Computer Science, Lincoln Laboratory, Massachusetts Institute of Technolog