Strange metallicity in the doped Hubbard model
Invited
Abstract
Strange or bad metallic transport, defined by its incompatibility with conventional quasiparticle pictures, is a theme common to strongly correlated materials and ubiquitous in high temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 the non-interacting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
–
Presenters
-
Thomas Devereaux
Stanford Univ, Materials Science and Engineering, Stanford University, Stanford University, SLAC National Accelerator Laboratory, Photon Sciences, Stanford Linear Accelerator (SLAC), SIMES, SLAC, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, SLAC National Accelerator Lab.
Authors
-
Thomas Devereaux
Stanford Univ, Materials Science and Engineering, Stanford University, Stanford University, SLAC National Accelerator Laboratory, Photon Sciences, Stanford Linear Accelerator (SLAC), SIMES, SLAC, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, SLAC National Accelerator Lab.