Computing with Quantum Analogues
ORAL
Abstract
Recent progress in the design and realization of phononic structures has resulted in a number of quantum analogues.1 Elastic waves in one-dimensional waveguides with broken time-reversal or parity symmetry obey Dirac-like equations and possess spin-like topology.2 Of particular interest for quantum computing is the design, construction, and demonstration of coherent superpositions of elastic waves in waveguides and coupled waveguides.3 These coherent superpositions can be characterized by the phase of the elastic wavefunction and are called phase-bits or phi-bits. The construction of non-separable (i.e., ‘classically entangled’) superpositions has been achieved using phi-bits comprised of coupled waveguides.4 These phononic structures allows accessing quantum analogue computing at room temperatures and long coherence times.
1 Sound Topology, Duality, Coherence, and Wave-Mixing: An Introduction to the New Science of Sound, by P. A. Deymier and K. Runge (Springer, 2017).
2 P. A. Deymier and K. Runge, Crystals 6, 44 (2016).
3 L. Calderin, M. Arif Hasan, N. Jenkins, T. Lata, P. Lucas, K. Runge, and P. A. Deymier, Scientific Reports 9, 14156 (2019).
4 M. A. Hasan, L. Calderin, T. Lata, P. Lucas, K. Runge, and P. A. Deymier, Communications Physics 2, 106 (2019).
1 Sound Topology, Duality, Coherence, and Wave-Mixing: An Introduction to the New Science of Sound, by P. A. Deymier and K. Runge (Springer, 2017).
2 P. A. Deymier and K. Runge, Crystals 6, 44 (2016).
3 L. Calderin, M. Arif Hasan, N. Jenkins, T. Lata, P. Lucas, K. Runge, and P. A. Deymier, Scientific Reports 9, 14156 (2019).
4 M. A. Hasan, L. Calderin, T. Lata, P. Lucas, K. Runge, and P. A. Deymier, Communications Physics 2, 106 (2019).
–
Presenters
-
Keith Runge
Univ of Arizona, Materials Science and Engineering, Univ. of Arizona
Authors
-
Keith Runge
Univ of Arizona, Materials Science and Engineering, Univ. of Arizona
-
M. Arif Hasan
Univ of Arizona
-
Lazaro Calderin
Univ of Arizona
-
Trevor Lata
Univ of Arizona
-
Pierre Lucas
Univ of Arizona
-
Pierre A. Deymier
Univ of Arizona