Band-Gap-Dependent Electronic Compressibility of Carbon Nanotubes in the Wigner Crystal Regime
ORAL
Abstract
Electronic compressibility, the second derivative of ground-state energy with respect to total electron number, is a measurable quantity that reveals the interaction strength of a system and can be used to characterize the orderly crystalline lattice of electrons known as the Wigner crystal. Here, we measure the electronic compressibility of individual suspended ultraclean carbon nanotubes in the low-density, Wigner crystal regime. Using low-temperature quantum transport measurements, we determine the compressibility as a function of carrier number in nanotubes with varying band gaps. We observe two qualitatively different trends in compressibility versus carrier number, both of which can be explained using a theoretical model of a Wigner crystal that accounts for both the band gap and the confining potential experienced by charge carriers. We extract the interaction strength as a function of carrier number for individual nanotubes and show that the compressibility can be used to distinguish between strongly- and weakly- interacting regimes.
–
Presenters
-
Neda Lotfizadeh
University of Utah
Authors
-
Neda Lotfizadeh
University of Utah
-
Daniel R. McCulley
Physics, Oregon State University, Oregon State University
-
Mitchell Senger
Physics, Oregon State University, Oregon State University
-
Han Fu
University of Chicago
-
Ethan D. Minot
Physics, Oregon State University, Oregon State University
-
Brian Skinner
Ohio State University, Ohio State Univ - Columbus
-
Vikram V Deshpande
University of Utah