Tunable bandwidths and gaps in twisted double bilayer graphene system on the verge of correlations
ORAL
Abstract
When two copies of bilayer graphene are put on top of each other with a relative twist, it allows electrical control over the flatness of the bands and the gaps between them. Even before studying interaction driven physics, it is useful to study the tunability of bands in such a system. We perform transport measurements on dual gated twisted double bilayer graphene device (TDBG) and use simple model calculations to understand important experimentally observed features. Specifically, we will discuss how the bandwidth of the bands can be tuned electrically and how an electron-hole asymmetric model can explain some observations. A discussion on some observations which may be precursors to correlation will conclude the presentation.
–
Presenters
-
Pratap Adak
Tata Institute of Fundamental Research (TIFR), Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research (TIFR)
Authors
-
Pratap Adak
Tata Institute of Fundamental Research (TIFR), Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research (TIFR)
-
Subhajit Sinha
Tata Institute of Fundamental Research (TIFR)
-
Unmesh Ghorai
Tata Institute of Fundamental Research (TIFR)
-
L. D. Varma Sangani
Tata Institute of Fundamental Research (TIFR)
-
Kenji Watanabe
National Institute for Materials Science, Japan, National Institute for Material Science, National Institute for Materials Science, National Institute for Materials Science, Tsukuba, Research Center for Functional Materials, NIMS, nims, Advanced Materials Laboratory, National Institute for Materials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS, National Institute for Material Science - Japan, NIMS Tsukuba, National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute for Materials Science (NIMS), National Institute for Materials Science,Tsukuba, Ibaraki 305-0047, Japan, Advanced Materials Laboratory, NIMS, Japan, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Materials Science, National Institute for Materials Science, University of Tsukuba, National Institute for Materials Science, Tsukuba, Japan, National Institute for Material Science, Japan, National Institue for Material Science, Tsukuba, Advanced Materials Laboratory, NIMS, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan, Advanced Matrials Lab, NIMS, National Institute for Material Science, Tsukuba, Japan, National institute for materials science, NIMS-Tsukuba, NIMS, Japan, National Institute for Materials Science, Namiki Tsukuba Ibaraki, Japan, NIRM, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Advanced Materials Laboratory, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science (Japan), Physics, NIMS, National Institute of Materials Science, Japan, National Institute of Materials Science (NIMS), National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, NIMS - Tsukuba
-
Takashi Taniguchi
National Institute for Materials Science, Japan, National Institute for Material Science, National Institute for Materials Science, National Institute for Materials Science, Tsukuba, Research Center for Functional Materials, NIMS, nims, Advanced Materials Laboratory, National Institute for Materials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS, National Institute for Material Science - Japan, NIMS Tsukuba, National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute for Materials Science (NIMS), National Institute for Materials Science,Tsukuba, Ibaraki 305-0047, Japan, Advanced Materials Laboratory, NIMS, Japan, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Materials Science, National Institute for Materials Science, University of Tsukuba, National Institute for Materials Science, Tsukuba, Japan, National Institue for Material Science, Tsukuba, Advanced Materials Laboratory, NIMS, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan, Advanced Matrials Lab, NIMS, National Institute for Material Science, Tsukuba, Japan, National institute for materials science, NIMS-Tsukuba, NIMS, Japan, National Institute for Materials Science, Namiki Tsukuba Ibaraki, Japan, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Advanced Materials Laboratory, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science (Japan), Physics, NIMS, National Institute of Materials Science, Japan, National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, NIMS - Tsukuba
-
Rajdeep Sensarma
Tata Institute of Fundamental Research (TIFR)
-
Mandar M Deshmukh
Tata Institute of Fundamental Research (TIFR), Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research (TIFR)