Quantum Depinning of a Magnetic Skyrmion
ORAL
Abstract
We investigate the quantum depinning of a weakly driven skyrmion out of an impurity potential in a mesoscopic magnetic insulator. For small barrier height, the Magnus force dynamics dominates over the inertial one, and the problem is reduced to a massless charged particle in a strong magnetic field. The universal form of the WKB exponent, the rate of tunneling, and the crossover temperature between thermal and quantum tunneling is provided, independently of the detailed form of the pinning potential. The results are discussed in terms of macroscopic parameters of the insulator Cu2OSeO3 and various skyrmion radii. We demonstrate that small enough magnetic skyrmions, with a radius of ∼10 lattice sites, consisting of some thousands of spins, can behave as quantum objects at low temperatures in the mK regime [1].
[1] C. Psaroudaki and D. Loss, arXiv:1910.09585v1 (2019).
[1] C. Psaroudaki and D. Loss, arXiv:1910.09585v1 (2019).
–
Presenters
-
Christina Psaroudaki
Physics, California Institute of Technology
Authors
-
Christina Psaroudaki
Physics, California Institute of Technology
-
Daniel Loss
University of Basel, Department of Physics, University of Basel, RIKEN, Physics, University of Basel, Department of Physics, university of Basel