Multifunctional Materials for Emerging Technologies
Invited
Abstract
As the age of fossil fuels is coming to an end, now more than ever there is the need for more efficient and sustainable renewable energy technologies. This presentation will give an overview on recent developments in solar technologies that aim to address the energy challenge. In particular, nanostructured materials synthesized via the bottom–up approach present an opportunity for future generation low cost manufacturing of devices [1]. We demonstrate various multifunctional materials, namely materials that exhibit more than one functionality, and structure/property relationships in such systems, including new strategies for the synthesis of multifunctional nanoscale materials to be used for applications in photovoltaics, solar hydrogen production, solar windowsand other emerging technologies. [2-23].
References
[1] F. Rosei, J.Phys.Cond.Matt. 16, S1373 (2004); [2] C. Yan et al., Adv.Mater. 22, 1741 (2010); [3] C. Yan et al., J.Am Chem.Soc. 132, 8868 (2010); [4] R. Nechache et al., Adv.Mater. 23, 1724 (2011); [5] R. Nechache et al., Appl.Phys.Lett. 98, 202902 (2011); [6] G. Chen et al., Adv.Func.Mater. 22, 3914 (2012); [7] S. Li et al., Chem.Comm. 49, 5856 (2013); [8] T. Dembele et al., J.Phys.Chem.C 117, 14510 (2013); [9] R. Nechache et al., Nature Phot. 9, 61 (2015); [10] R. Nechache et al., Nanoscale 8, 3237 (2016); [11] R. Adhikari et al. Nano Energy 27, 265 (2016); [12] H. Zhao et al., Small 12, 3888 (2016); [13] Y. Zhou et al., Adv.En.Mater. 6, 1501913 (2016); [14] L. Jin et al., Adv.Sci. 3, 1500345 (2016); [15] H. Zhao et al., Small 11, 5741 (2015); [16] S. Li et al., Small 11, 4018 (2015); [17] K.T. Dembele et al., J.Mater.Chem.A 3, 2580 (2015); [18] H. Zhao et al., Nano Energy 34, 214 (2017); [19] S. Li et al., Nano Energy 35, 92 (2017); [20] G.S. Selopal et al., Adv.Func.Mater. 27, 1401468 (2017); [21] X. Tong et al., Adv.En.Mater. 8, 1701432 (2018); [22] H. Zhao, F. Rosei, Chem 3, 229 (2017); [23] J. Chakrabartty et al., Nature Phot. 12, 271 (2018).
References
[1] F. Rosei, J.Phys.Cond.Matt. 16, S1373 (2004); [2] C. Yan et al., Adv.Mater. 22, 1741 (2010); [3] C. Yan et al., J.Am Chem.Soc. 132, 8868 (2010); [4] R. Nechache et al., Adv.Mater. 23, 1724 (2011); [5] R. Nechache et al., Appl.Phys.Lett. 98, 202902 (2011); [6] G. Chen et al., Adv.Func.Mater. 22, 3914 (2012); [7] S. Li et al., Chem.Comm. 49, 5856 (2013); [8] T. Dembele et al., J.Phys.Chem.C 117, 14510 (2013); [9] R. Nechache et al., Nature Phot. 9, 61 (2015); [10] R. Nechache et al., Nanoscale 8, 3237 (2016); [11] R. Adhikari et al. Nano Energy 27, 265 (2016); [12] H. Zhao et al., Small 12, 3888 (2016); [13] Y. Zhou et al., Adv.En.Mater. 6, 1501913 (2016); [14] L. Jin et al., Adv.Sci. 3, 1500345 (2016); [15] H. Zhao et al., Small 11, 5741 (2015); [16] S. Li et al., Small 11, 4018 (2015); [17] K.T. Dembele et al., J.Mater.Chem.A 3, 2580 (2015); [18] H. Zhao et al., Nano Energy 34, 214 (2017); [19] S. Li et al., Nano Energy 35, 92 (2017); [20] G.S. Selopal et al., Adv.Func.Mater. 27, 1401468 (2017); [21] X. Tong et al., Adv.En.Mater. 8, 1701432 (2018); [22] H. Zhao, F. Rosei, Chem 3, 229 (2017); [23] J. Chakrabartty et al., Nature Phot. 12, 271 (2018).
–
Presenters
-
Federico Rosei
INRS - Energie et Materiaux
Authors
-
Federico Rosei
INRS - Energie et Materiaux