Emerging Trends in Molecular Dynamics Simulations and Machine Learning I
FOCUS · J45 · ID: 355236
Presentations
-
Generative and Reinforcement Learning assisted Material Design
Invited
–
Presenters
-
Pankaj Rajak
Argonne National Lab, LCF, Argonne National Laboratory
Authors
-
Pankaj Rajak
Argonne National Lab, LCF, Argonne National Laboratory
-
-
Unbiasing machine learning for molecular dynamics: emphasising out-of-equilibrium geometries using clustering
ORAL
–
Presenters
-
Grégory Cordeiro Fonseca
University of Luxembourg
Authors
-
Grégory Cordeiro Fonseca
University of Luxembourg
-
Igor Poltavskyi
University of Luxembourg Limpertsberg, University of Luxembourg
-
Alexandre Tkatchenko
Physics and Materials Science Reasearch Unit, University of Luxembourg, Physics and Materials Science Research Unit, University of Luxembourg, University of Luxembourg, University of Luxembourg Limpertsberg
-
-
Challenges in developing an extremely accurate many-body force field
ORAL
–
Presenters
-
Elizabeth Decolvenaere
D. E. Shaw Research
Authors
-
Elizabeth Decolvenaere
D. E. Shaw Research
-
Rian Cort Kormos
D. E. Shaw Research
-
Alexander Donchev
D. E. Shaw Research
-
John L Klepeis
D. E. Shaw Research
-
David E. Shaw
D. E. Shaw Research
-
-
Uncertainty quantification in molecular simulations with dropout neural network potentials
ORAL
–
Presenters
-
Mingjian Wen
University of California, Berkeley
Authors
-
Mingjian Wen
University of California, Berkeley
-
Ellad B. Tadmor
University of Minnesota, Twin Cities
-
-
Improving Fidelity and Transferability of Machine-Learned Reactive Interatomic Models Through Active Learning
ORAL
–
Presenters
-
Rebecca Lindsey
Lawrence Livermore Natl Lab
Authors
-
Rebecca Lindsey
Lawrence Livermore Natl Lab
-
Laurence Fried
Lawrence Livermore Natl Lab
-
Nir Goldman
Lawrence Livermore Natl Lab
-
Sorin Bastea
Lawrence Livermore Natl Lab
-
-
Uncertainty quantification of classical interatomic potentials in OpenKIM database
ORAL
–
Presenters
-
Yonatan Kurniawan
Brigham Young Univ - Provo
Authors
-
Yonatan Kurniawan
Brigham Young Univ - Provo
-
Cody Petrie
Brigham Young Univ - Provo
-
Kinamo Jahali Williams
Brigham Young Univ - Provo
-
Mark Transtrum
Brigham Young Univ - Provo, Physics & Astronomy, Brigham Young University, Brigham Young University, Physics and Astronomy, Brigham Young University
-
-
Molecular dynamics density and viscosity simulations of alkanes
ORAL
–
Presenters
-
Pavao Santak
Univ of Cambridge
Authors
-
Pavao Santak
Univ of Cambridge
-
Gareth Conduit
Univ of Cambridge
-
-
Study of the microstructure of amorphous silicon and its effect on Li transportation with neural network potential
ORAL
–
Presenters
-
Wenwen Li
AIST, National Institute of Advanced Industrial Science and Technology
Authors
-
Wenwen Li
AIST, National Institute of Advanced Industrial Science and Technology
-
Yasunobu Ando
CD-FMat, AIST, AIST, National Institute of Advanced Industrial Science and Technology
-
-
Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures
ORAL
–
Presenters
-
David Rosenberger
Los Alamos National Laboratory
Authors
-
David Rosenberger
Los Alamos National Laboratory
-
Nico F. A. van der Vegt
Chemistry, TU Darmstadt
-
-
Exploring, fitting, and characterizing the configuration space of materials with multiscale universal descriptors
ORAL
–
Presenters
-
Noam Bernstein
United States Naval Research Laboratory
Authors
-
Noam Bernstein
United States Naval Research Laboratory
-
Volker L Deringer
Department of Chemistry, University of Oxford
-
Gábor Csányi
Department of Engineering, University of Cambridge
-
-
Predictive Atomistic Simulations of Materials using SNAP Data-Driven Potentials
ORAL
–
Presenters
-
Aidan Thompson
Sandia National Laboratories, Computational Multiscale, Sandia National Laboratories
Authors
-
Aidan Thompson
Sandia National Laboratories, Computational Multiscale, Sandia National Laboratories
-
Mitchell Wood
Sandia National Laboratories, Computational Multiscale, Sandia National Laboratories
-
Mary Alice Cusentino
Sandia National Laboratories, Computational Multiscale, Sandia National Laboratories
-
Julien Tranchida
Sandia National Laboratories, Computational Multiscale, Sandia National Laboratories
-
Nicholas Lubbers
Computer, Computational and Statistical Sciences, Information Sciences, Los Alamos National Laboratory, Computer Computational Statistical Sciences, Los Alamos National Laboratory
-
Stan Moore
Computational Multiscale, Sandia National Laboratories
-
Rahul Gayatri
Application Performance, NERSC, Lawrence Berkeley National Laboratory
-
-
Accurate and Data-Efficient Machine Learning Force Fields for Periodic Systems
ORAL
–
Presenters
-
Luis Gálvez-González
Programa de Doctorado en Ciencias (Física), Universidad de Sonora
Authors
-
Luis Gálvez-González
Programa de Doctorado en Ciencias (Física), Universidad de Sonora
-
Huziel Sauceda
Tech Univ Berlin, Machine Learning Group, Technische Universität Berlin
-
Stefan Chmiela
Tech Univ Berlin, Machine Learning Group, Technische Universität Berlin
-
Alvaro Posada-Amarillas
Departamento de Investigación en Física, Universidad de Sonora
-
Lauro Oliver Paz-Borbón
Instituto de Física, Universidad Nacional Autónoma de México
-
Klaus-Robert Müller
Tech Univ Berlin, Machine Learning Group, Technische Universität Berlin
-
Alexandre Tkatchenko
Physics and Materials Science Reasearch Unit, University of Luxembourg, Physics and Materials Science Research Unit, University of Luxembourg, University of Luxembourg, University of Luxembourg Limpertsberg
-
-
Phase diagrams of nuclear pasta phases in neutron star matter
ORAL
–
Presenters
-
Jorge Munoz
University of Texas, El Paso
Authors
-
Jorge Munoz
University of Texas, El Paso
-
Jorge Alberto Lopez
University of Texas, El Paso
-