APS Logo

Basic construction of a tensor network library

ORAL

Abstract

We present a template tensor network code written in the programming language julia. The code is simple, short, and is also is efficient, competing in speed with some implementations in lower-level languages. The code can provide an efficient means to learn tensor networks as it is well documented for users of all levels, and the code can be used to check other libraries in development. A large number of algorithms have been implemented. Given time, new algorithms developed while creating this library will be discussed.

Presenters

  • Thomas Baker

    Institut quantique and Departement de Physique, Universite de Sherbrooke, Département de Physique, Université de Sherbrooke, Universite de Sherbrooke

Authors

  • Thomas Baker

    Institut quantique and Departement de Physique, Universite de Sherbrooke, Département de Physique, Université de Sherbrooke, Universite de Sherbrooke

  • Alexandre Foley

    Département de Physique, Université de Sherbrooke

  • Agustin Di Paolo

    Département de Physique, Université de Sherbrooke

  • Martin P Thompson

    Département de Physique, Université de Sherbrooke