APS Logo

Ballistic electrons splashing down in a Fermi sea of a 1-dimenssional quantum Hall liquid

POSTER

Abstract

The one-dimensional, chiral and dissipationless edge channels of the quantum Hall effect are good canditates to form the electrical analogue of optical fibers, which alllows to coherently manipulate the propagation of single electronic wave packets. However Coulomb interactions between neighboring edge channels can lead to energy relaxation. We explore this phenomenon by measuring the energy distribution function of quasiparticles emitted at well-defined energy in an edge channel at filling factor ν = 2. Our setup relies on a pair of electrostatically defined quantum dots, used as energy-resolved emitter and detector, tunnel coupled to an edge channel. We show that, on sub-micron lengths, quasiparticles undergo a strong relaxation with a survival probability dropping exponentially with their energy. Remarkably, this relaxation preserves the position and width of the quasiparticle peak in the energy distribution function. Furthermore, at intermediate lengths, we observe a marked revival of the peak at high injection energy. Our findings are qualitatively compatible with the conventionally considered theories, however new ingredients such as dissipation seem crucial in order to provide a more quantitative comparison.

Presenters

  • Ramiro Rodriguez

    Flux Quantum Lab, CNRS USR 3573, Collège de France, Paris, France, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France

Authors

  • Ramiro Rodriguez

    Flux Quantum Lab, CNRS USR 3573, Collège de France, Paris, France, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France

  • Francois Parmentier

    SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France

  • Dario Ferraro

    Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy & SPIN-CNR, Via Dodecaneso 33, 16146, Genova, Italy

  • Preden Roulleau

    Service de Physique de l'Etat Condense, CEA Saclay, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France, CEA-Saclay

  • Ulf Gennser

    Centre national de la recherche scientifique, Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France

  • Antonella Cavanna

    Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France

  • Maura Sassetti

    Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy & SPIN-CNR, Via Dodecaneso 33, 16146, Genova, Italy

  • Fabien Portier

    SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France, SPEC (UMR 3680 CEA-CNRS), CEA Paris-Saclay

  • Dominique Mailly

    Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France, C2N, CNRS

  • Patrice Roche

    SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France, SPEC (UMR 3680 CEA-CNRS), CEA Paris-Saclay