APS Logo

Streamlining twisted bilayer graphene measurements

ORAL

Abstract

Twisted bilayer graphene (TBG) has emerged as a promising platform for studying strongly correlated physics. When the twist angle is near the magic angle of approximately one degree, transport measurements have revealed a host of interesting phenomena including correlated insulating states, superconductivity, and ferromagnetism. However, fabricating and effectively measuring TBG samples remains challenging. The twist angle varies widely from sample to sample, and even from contact to contact within the same sample. In this work, I present a few tools we have used in order to streamline the process of making and measuring TBG samples, along with some interesting results encountered along the way.

Presenters

  • Joe Finney

    Stanford Univ

Authors

  • Joe Finney

    Stanford Univ

  • Aaron Sharpe

    Physics, Stanford University, Stanford Univ, Stanford

  • Arthur W Barnard

    Stanford Univ, Physics, Stanford University

  • Connie Hsueh

    Department of Applied Physics, Stanford University, Stanford Univ

  • Eli J Fox

    Stanford Univ, Stanford

  • Kenji Watanabe

    National Institute for Materials Science, Japan, National Institute for Material Science, National Institute for Materials Science, National Institute for Materials Science, Tsukuba, Research Center for Functional Materials, NIMS, nims, Advanced Materials Laboratory, National Institute for Materials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS, National Institute for Material Science - Japan, NIMS Tsukuba, National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute for Materials Science (NIMS), National Institute for Materials Science,Tsukuba, Ibaraki 305-0047, Japan, Advanced Materials Laboratory, NIMS, Japan, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Materials Science, National Institute for Materials Science, University of Tsukuba, National Institute for Materials Science, Tsukuba, Japan, National Institute for Material Science, Japan, National Institue for Material Science, Tsukuba, Advanced Materials Laboratory, NIMS, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan, Advanced Matrials Lab, NIMS, National Institute for Material Science, Tsukuba, Japan, National institute for materials science, NIMS-Tsukuba, NIMS, Japan, National Institute for Materials Science, Namiki Tsukuba Ibaraki, Japan, NIRM, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Advanced Materials Laboratory, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science (Japan), Physics, NIMS, National Institute of Materials Science, Japan, National Institute of Materials Science (NIMS), National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, NIMS - Tsukuba

  • Takashi Taniguchi

    National Institute for Materials Science, Japan, National Institute for Material Science, National Institute for Materials Science, National Institute for Materials Science, Tsukuba, Research Center for Functional Materials, NIMS, nims, Advanced Materials Laboratory, National Institute for Materials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, NIMS, National Institute for Material Science - Japan, NIMS Tsukuba, National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan., National Institute for Materials Science (NIMS), National Institute for Materials Science,Tsukuba, Ibaraki 305-0047, Japan, Advanced Materials Laboratory, NIMS, Japan, National Institute for Materials Science,1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Materials Science, National Institute for Materials Science, University of Tsukuba, National Institute for Materials Science, Tsukuba, Japan, National Institue for Material Science, Tsukuba, Advanced Materials Laboratory, NIMS, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan, Advanced Matrials Lab, NIMS, National Institute for Material Science, Tsukuba, Japan, National institute for materials science, NIMS-Tsukuba, NIMS, Japan, National Institute for Materials Science, Namiki Tsukuba Ibaraki, Japan, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan, NIMS Japan, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Advanced Materials Laboratory, National Institute of Materials Science, Advanced Materials Laboratory, National Institute for Materials Science 1-1 Namiki, Tsukuba, 305-0044, Japan, National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science (Japan), Physics, NIMS, National Institute of Materials Science, Japan, National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan, NIMS - Tsukuba

  • Marc Kastner

    Stanford Univ, MIT

  • David Goldhaber-Gordon

    Stanford Univ, Physics, Stanford University, Stanford, Department of Physics, Stanford University