APS Logo

Growth and characterization of Si/SiGe heterostructures towards scalable qubit architecture

POSTER

Abstract

Strained Si/SiGe Quantum Well (QW) structures are a promising material system for the realization of spin qubits based on spatially confined electrons. A major advantage for Si-based structures is their compatibility with mature Si-CMOS technology, providing high scalability. In this study we show a first step towards determining the relationship between the material properties (e.g. interface roughness and defect density) and qubit performance of these structures. In order to discuss the influence of the material properties of the QW, tensile strained Si QW embedded in Si0.7 Ge0.3 layers with different types of SiGe buffer layers are fabricated on 200 mm Si substrates. The material properties are characterized by various methods (X-Ray Diffraction, Secondary Ion Mass Spectrometry, Scanning Transmission Electron Microscopy).

Presenters

  • Cedric Corley

    Materials Research, IHP – Leibniz-Institut für innovative Mikroelektronik

Authors

  • Cedric Corley

    Materials Research, IHP – Leibniz-Institut für innovative Mikroelektronik

  • Yuji Yamamoto

    Technology, IHP – Leibniz-Institut für innovative Mikroelektronik

  • Markus Andreas Schubert

    Technology, IHP – Leibniz-Institut für innovative Mikroelektronik

  • Florian Bärwolf

    Technology, IHP – Leibniz-Institut für innovative Mikroelektronik

  • Marvin Zöllner

    Materials Research, IHP – Leibniz-Institut für innovative Mikroelektronik

  • Inga Seidler

    JARA-Institute for Quantum Information, RWTH Aachen University, D-52074 Aachen, Germany, JARA-FIT Institute for Quantum Information, RWTH Aachen University

  • Malte Neul

    JARA-FIT Institute for Quantum Information, RWTH Aachen University

  • Lars Schreiber

    JARA-Institute for Quantum Information, RWTH Aachen University, D-52074 Aachen, Germany, JARA-FIT Institute for Quantum Information, RWTH Aachen University

  • Giovanni Capellini

    Materials Research, IHP – Leibniz-Institut für innovative Mikroelektronik

  • Wolfgang Matthias Klesse

    Materials Research, IHP – Leibniz-Institut für innovative Mikroelektronik