APS Logo

Clogging and Depinning of Active Matter Systems in Disordered Media

Invited

Abstract

We numerically examine the transport of active run-and-tumble particles with steric particle-particle interactions driven with a drift force over random disordered landscapes comprised of fixed obstacles. For increasing run lengths, the net particle transport initially increases before reaching a maximum and decreasing at larger run lengths. The transport reduction is associated with the formation of cluster states that become locally jammed or clogged by the obstacles. We also find that the system dynamically jams at lower particle densities when the run length is increased. Our results indicate that there is an optimal activity level for transport of run-and-tumble type active matter through quenched disorder, and could be important for understanding biological transport in complex environments or for applications of active matter particles in random media.

Presenters

  • Cynthia Reichhardt

    T1, Los Alamos National Laboratory, Los Alamos Natl Lab, Los Alamos National Laboratory, Theoretical Division, Los Alamos National Laboratory

Authors

  • Cynthia Reichhardt

    T1, Los Alamos National Laboratory, Los Alamos Natl Lab, Los Alamos National Laboratory, Theoretical Division, Los Alamos National Laboratory