Mechanical response of ultralight nickel kagom\'{e} structure to compression

POSTER

Abstract

Deformation behavior of an ultralight architecture consisting of hollow Ni nanotubes and solid nanorods arranged as a 3-D kagom\'{e} structure is studied using Molecular dynamics simulations. As a precursor, we have also investigated mechanical response of a single hollow Ni nanotube and nanorod under uniaxial compression. We observe that 1/6(112) Shockley partial dislocations and twin formation at 3.5{\%} compression collapse the nanotube and nanorod. Kagom\'{e} structure made from solid nanorods shows deformation both near the node of kagom\'{e} lattice and the eight beams connected to it for compression above 5{\%}. In the case of hollow nanotube architecture, most of the deformation is observed near the node of the kagom\'{e} structure for strains higher than 6{\%}. At 8{\%} and 12.5{\%} compression, we observe plastic buckling of solid and hollow architecture, respectively. Hence hollow nanotube architecture can withstand much larger compression with very little deformation of the system than the solid nanorod architecture. The deformation in all these systems is caused by 1/6(112) Shockley partial and 1/2(110) dislocations.

Authors

  • Pankaj Rajak

    Univ of Southern California, University of Southern California

  • Rajiv Kalia

    Univ of Southern California, CACS Mork Family Department of Chemical Engineering and Material Science, Department of Physics, University of Southern California, University of Southern California, CACS, Dept. of Physics & Astronomy, Dept. of Chemical Engineering & Materials Science, Dept. of Computer Science, University of Southern California, CACS, Department of Physics and Astronomy, Department of Chemical Engineering and Materials Science, Collaboratory of Advanced Computing and Simulations Department of Physics and Astronomy,University of Southern California

  • Aiichiro Nakano

    Univ of Southern California, CACS Mork Family Department of Chemical Engineering and Material Science, Department of Physics, University of Southern California, University of Southern California, CACS, Dept. of Physics & Astronomy, Dept. of Chemical Engineering & Materials Science, Dept. of Computer Science, University of Southern California, CACS, Department of Physics and Astronomy, Department of Chemical Engineering and Materials Science, Collaboratory of Advanced Computing and Simulations Department of Physics and Astronomy,University of Southern California

  • Priya Vashishta

    Univ of Southern California, CACS Mork Family Department of Chemical Engineering and Material Science, Department of Physics, University of Southern California, University of Southern California, CACS, Dept. of Physics & Astronomy, Dept. of Chemical Engineering & Materials Science, Dept. of Computer Science, University of Southern California, CACS, Depts. of Physics & Astronomy, Computer Science, and Chemical Engg. & Material Science, USC, CACS, Department of Physics and Astronomy, Department of Chemical Engineering and Materials Science, Collaboratory of Advanced Computing and Simulations Department of Physics and Astronomy,University of Southern California, CACS, Depts. of Physics & Astronomy, Computer Science, and Chemical Engg. and Material Science, USC