Cu Single Crystal Substrates for Growth of CVD Graphene
ORAL
Abstract
To provide a systematic study of the CVD graphene growth process, a study of the growth of graphene on single crystal Cu substrates, with terminations along the (100), (110), and (111) planes, was performed. Synthesis was performed in an ultra-high vacuum (UHV) chamber using a modified setup to allow growth at pressures as high as 1 Torr. Ethylene was used as the precursor gas. To control Cu sublimation at the elevated growth temperatures, an Ar overpressure was used. This arrangement allowed for the preparation of clean Cu surfaces by sputtering and annealing the Cu crystals in UHV, followed by graphene growth at low pressure, and in-situ analysis with low energy electron diffraction. It was found that surface termination plays a strong role in the rotational alignment of the nucleating graphene grains and the decomposition rate of the ethylene. It was observed that single-domain epitaxy is possible on Cu(111) when the ethylene pressure is 5 mTorr or less. However, growth on both Cu(100) and Cu(110) result in a minimum of two domains. In addition, ex-situ EELS is currently being performed on well-ordered epitaxial graphene films grown on Cu(111) and Cu(100) to determine the effect of the graphene-Cu interaction on the electronic properties of the graphene.
–
Authors
-
Tyler Mowll
SUNY Albany
-
Zachary Robinson
College at Brockport-SUNY
-
Carl Ventrice
SUNY Polytechnic Institute