Site specific physics in RT$_{5}$ (R $=$ rare earths and T $=$ transition metals) materials
POSTER
Abstract
Most of RT$_{5}$ compounds form in hexagonal CaCu$_{5}$-type structure with three non-equivalent sites: R (1a), T (2c), and T (3g). R atoms sit in the middle of the T (2c) hexagonal layers. Advanced density functional theory calculations including on-site electron correlation and spin orbit coupling show crystal field split localized R 4f states, which are responsible for the large part of the magnetic anisotropy exhibited by these systems. In addition, the hexagonal T (2c) layers help enhancing the magnetic anisotropy. Partially quenched R 4f orbital moment is the origin of magnetic anisotropy which also helps enhancing magnetic moment. The interchange of T sites by other transition metals and the partial substitution of R atoms by transition metals could optimize needed magnetic moment and magnetic anisotropy by forming a complex geometry structure favoring permanent magnetic properties.
Authors
-
Durga Paudyal
Ames Laboratory, Iowa State University, Ames, IA 50011, The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011-3020, Ames Laboratory, Ames, IA 50011, USA, Ames Laboratory, Ames Laboratory, Ames, IA, USA