Phase diagram and quantum criticality of disordered Majorana-Weyl fermions
ORAL
Abstract
A three-dimensional $p_x+i p_y$ superconductor hosts gapless Bogoliubov-de Gennes (BdG) quasiparticles which provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI), and (ii) a thermal Anderson insulator (AI). We also discuss the experimental relevance of our results for three-dimensional, time reversal symmetry breaking, triplet superconducting states.
–
Authors
-
Justin Wilson
California Institute of Technology
-
Jed Pixley
University of Maryland at College Park
-
Pallab Goswami
University of Maryland at College Park