Deconstruction and conditional erasure of quantum correlations

ORAL

Abstract

We define the deconstruction cost of a tripartite quantum state on systems $ABE$ as the minimum rate of noise needed to apply to the $AE$ systems, such that there is negligible disturbance to the marginal state on the $BE$ systems and the system $A$ of the resulting state is locally recoverable from the $E$ system alone. We refer to such actions as deconstruction operations and protocols implementing them as state deconstruction protocols. State deconstruction generalizes Landauer erasure of a single-party state as well the erasure of correlations of a two-party state. We find that the deconstruction cost of a tripartite quantum state on systems $ABE$ is equal to its conditional quantum mutual information (CQMI) $I(A;B|E)$, thus giving the CQMI an operational interpretation in terms of a state deconstruction protocol. We also define a related task called conditional erasure, in which the goal is to apply noise to systems $AE$ in order to decouple system $A$ from systems $BE$, while causing negligible disturbance to the marginal state of systems $BE$. We find that the optimal rate of noise for conditional erasure is also equal to the CQMI $I(A;B|E)$. State deconstruction and conditional erasure lead to operational interpretations of quantum discord and squashed entanglement.

Authors

  • Mario Berta

    California Institute of Technology

  • Fernando Brandao

    California Institute of Technology

  • Christian Majenz

    University of Copenhagen

  • Mark Wilde

    Louisiana State Univ - Baton Rouge