Granular gas mediated attraction of intruders in a granular Casimir effect

POSTER

Abstract

When two objects are submerged in a granular gas, entropic effects due to inelastic collisions lead to attractions between the objects. This has been referred to as an analog to the Casimir effect, though arises via a different mechanism. In this experiment, we place two objects (such as vertical plates or spheres) in either a strongly driven granular gas or dense fluid. We find that when the plates are closely spaced, there is a net attractive force. By analyzing high-speed video, we track the distance between these plates and characterize the effective force versus distance with changes in the vibration parameters and initial separation. A 2D simulation is also used to further explore parameter space.

Authors

  • George Wilkes

    James Madison University

  • Brian Utter

    James Madison University