Ground state entanglement constrains low-energy excitations

ORAL

Abstract

For a general quantum many-body system, we show that its ground state entanglement imposes a fundamental constraint on the low-energy excitations. For two-dimensional systems, our result implies that any system that supports anyons must have a nonvanishing topological entanglement entropy. We demonstrate the generality of this argument by applying it to three-dimensional quantum many-body systems, and showing that there is a pair of ground state topological invariants that are associated to their physical boundaries. From the pair, one can determine whether the given boundary can or cannot absorb point-like or line-like excitations.

Authors

  • Isaac Kim

    Perimeter Inst for Theo Phys

  • Benjamin Brown

    Imperial College London