Developing a protocol for creating microfluidic devices with a 3D printer, PDMS, and glass
POSTER
Abstract
Microfluidics research requires the design and fabrication of devices that have the ability to manipulate small volumes of fluid, typically ranging from microliters to picoliters. These devices are used for a wide range of applications including the assembly of materials and testing of biological samples. Many methods have been previously developed to create microfluidic devices, including traditional nanolithography techniques. However, these traditional techniques are cost-prohibitive for many small-scale laboratories. This research explores a relatively low-cost technique using a 3D printed master, which is used as a template for the fabrication of polydimethylsiloxane (PDMS) microfluidic devices. The masters are designed using computer aided design (CAD) software and can be printed and modified relatively quickly. We have developed a protocol for creating simple microfluidic devices using a 3D printer and PDMS adhered to glass. This relatively simple and lower-cost technique can now be scaled to more complicated device designs and applications.
Authors
-
Robyn Collette
Shippensburg University of Pennsylvania
-
Eric Novak
Shippensburg University of Pennsylvania, Shippensburg University
-
Kathryn Shirk
Shippensburg University of Pennsylvania