Quasiparticle and Optical Properties of Mono- and Bi-layer SnS2: A First-Principles GW and GW$+$BSE Study

ORAL

Abstract

Unlike most semiconducting transition metal dichalcogenides, SnS2, another layered metal dichalcogenide, is calculated within density functional theory to be an indirect bandgap semiconductor in both its bulk and monolayer forms. Experimental characterization of mono- and bi-layer SnS2 has been performed, but the details of its quasiparticle and excitonic properties remain unclear. Thus, we employ ab initio GW and GW$+$BSE calculations to study the quasiparticle band structure and optical absorption spectrum, respectively, of mono- and bi-layer SnS2 with spin-orbit coupling included throughout the calculations. We further investigate the character of excitonic states contributing to the optical spectrum.

Authors

  • Meng Wu

    Physics Department, UC Berkeley and Lawrence Berkeley National Lab

  • Diana Qiu

    Univ of California - Berkeley and Lawrence Berkeley National Lab, Physics Department, UC Berkeley and Lawrence Berkeley National Lab

  • Steven G. Louie

    University of California at Berkeley, Lawrence Berkeley National Lab, University of California - Berkeley and Lawrence Berkeley National Lab, Department of Physics, University of California at Berkeley; Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Univ of California - Berkeley and Lawrence Berkeley National Lab, Department of Physics, UC Berkeley and Lawrence Berkeley National Lab, University of California, Berkeley and Lawrence Berkeley National Laboratory, University of California at Berkeley and Lawrence Berkeley National Laboratory, UC Berkeley and Lawrence Berkeley National Lab, University of California at Berkeley and Lawrence Berkeley National Lab, Physics Department, UC Berkeley and Lawrence Berkeley National Lab, Department of Physics, University of California, Berkeley, and Materials Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA, UC Berkeley physics/ LBNL MSD