Dynamics across the morphological transition in two-dimensional aggregates

ORAL

Abstract

Microscopic dynamics of two-dimensional aggregates have been studied by analysing simulated particle trajectories generated by molecular dynamics. Tuning the competition between the short-range attraction and long-range repulsion in a particulate system at fixed temperature and density results in a continuous non-compact to compact morphological transition. The finite-size aggregates, obtained by very slow cooling, show long-time sub-diffusive behaviour irrespective of their morphologies. By analysing the relative displacement fluctuations of particles with respect to their nearest neighbours, non-compact aggregates can be attributed to bonding between particles while caging is found to be responsible for compact clusters. These dynamical mechanisms are further illustrated by the self-displacement fluctuation of particles which show a continuous change from power-law to exponential behaviour across the non-compact to compact transition.

Authors

  • Mahesh Bandi

    OIST Graduate University

  • Tamoghna Das

    OIST Graduate University