Combining Molecular Dynamics and Density Functional Theory

COFFEE_KLATCH · Invited

Abstract

The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction.

Authors

  • Efthimios Kaxiras

    Department of Physics and School of Engineering and Applied Sciences, Harvard University, Harvard University, Harvard University Department of Physics and School of Engineering and Applied Sciences, Dept. of Physics, Harvard University, Department of Physics, Harvard University, Physics Department, Harvard University