Synthesis of Biomimetic Branched Polymer Architectures

ORAL

Abstract

Development of sequence-defined or structurally-precise polymers as high-performance materials is a major challenge in materials science. In this work, we report a facile synthesis platform to produce monodisperse and stereochemically precise nucleotidomimetic polymers. Based on a top-down approach, we are able to precisely incorporate a wide-variety of functional group modifications in a simple two-step process. First, we utilize the natural ability of DNA polymerase to enzymatically incorporate chemically-modified monomers (e.g., C5-dibenzocyclooctyl dUTP) in a template-directed fashion. Second, we employ copper-free click chemistry to integrate the desired chemical functionality at precise locations along the polymer chain. In this way, we produced a variety of branched DNA homopolymer architectures including 3-arm star, symmetric H, and block-brush. Overall, this synthetic strategy allows for the systematic variation of oligomer length, stoichiometry, concentration, and environmental conditions to rapidly explore nucleotidomimetic polymer phase behavior for materials discovery.

Authors

  • Amanda Marciel

    University of Illinois at Urbana-Champaign

  • Danielle Mai

    University of Illinois at Urbana-Champaign

  • Charles M. Schroeder

    University of Illinois at Urbana-Champaign, Univ of Illinois - Urbana, Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Department of Chemical and Biomolecular Engineering, University of Illinois - Urbana, Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign