Theory of charge-density-wave non-contact nanofriction
ORAL
Abstract
Bulk dissipation caused by charge-density-wave (CDW) voltage-induced depinning and sliding is a classic subject. We present a local, nanoscale mechanism describing the occurrence of distance-dependent dissipation in the dynamics of an atomic force microscope tip oscillating over the surface of a CDW material. A mechanical tip hysteresis is predicted in correspondence to localized 2 slips of the CDW phase, giving rise to large tip dissipation peaks at selected distances. Results of static and dynamic numerical simulations of the tip-surface interaction are believed to be relevant to recent experiments on the layer compound NbSe .
–
Authors
-
Erio Tosatti
SISSA, CNR-IOM Democritos and ICTP Trieste, Italy, SISSA, ICTP, CNR-IOM Democritos, International School for Advanced Studies (SISSA) \& International Centre for Theoretical Physics (ICTP), Trieste, Italy, SISSA, ICTP, and CNR-IOM Democritos, Trieste, Italy, ICTP, and CNR-IOM Democritos, and SISSA, Trieste, Italy, SISSA, CNR-IOM Democritos and ICTP, Trieste, Italy, SISSA, Via Bonomea 265, I-34136 Trieste, Italy
-
Franco Pellegrini
SISSA, CNR-IOM Democritos
-
Giuseppe E. Santoro
SISSA, ICTP, CNR-IOM Democritos