Entanglement Temperature and Entanglement Entropy of Excited States
ORAL
Abstract
We derive a general relation between the ground state entanglement Hamiltonian and the physical stress tensor within the path integral formalism. For spherical entangling surfaces in a CFT, we reproduce the \emph{local} ground state entanglement Hamiltonian derived by Casini, Huerta and Myers. The resulting reduced density matrix can be characterized by a spatially varying ``entanglement temperature.'' Using the entanglement Hamiltonian, we calculate the first order change in the entanglement entropy due to changes in conserved charges of the ground state, and find a local first law-like relation for the entanglement entropy. Our approach provides a field theory derivation and generalization of recent results obtained by holographic techniques. However, we note a discrepancy between our field theoretically derived results for the entanglement entropy of excited states with a non-uniform energy density and current holographic results in the literature. Finally, we give a CFT derivation of a set of constraint equations obeyed by the entanglement entropy of excited states in any dimension. Previously, these equations were derived in the context of holography.
–
Authors
-
Gabriel Wong
University of Virginia, Charlottesville
-
Israel Klich
University of Virginia, Charlottesville
-
Leopaldo A. Pando Zayas
University of Michigan, Ann Arbor
-
Diana Vaman
University of Virginia, Charlottesville