Comparison Between Crystalline and Amorphous Surfaces of Transition Metal Oxide Water Oxidation Catalysts: a Theoretical Perspective
ORAL
Abstract
Amorphous films of transition-metal oxide water oxidation catalysts (WOCs) often show an enhanced catalytic activity compared to their crystalline counterparts [1-4]. In particular, in the case of cobalt-oxide based WOCs the observed similarity in their electrochemical properties and catalytic activity, under oxidative conditions, has been correlated with the formation of similar amorphous surface morphologies, suggesting the presence of a common, catalytically active amorphous structural motif [3,4]. We present ab initio calculations of cobalt oxide based material surfaces and we compare the electronic properties of crystalline and amorphous surfaces, with the aim of identifying differences related to their different catalytic activity.\\[4pt] [1] Blakemore, J. D., Schley, N. D., Kushner-Lenhoff, M. N., Winter, A. M., D'Souza, F., Crabtree, R. H., and Brudvig, G. W. Inorg. Chem. 51, 7749 (2012); [2] Tsuji, E., Imanishi, A., Fukui, K.-I. and Nakato, Y. Electrochimica Acta 56, 2009 (2011); [3] Jia, H., Stark, J., Zhou, L. Q., Ling, C., Takeshi, S., and Markin, Z. RSC Advances 2, 10874 (2012); [4] Lee, S. W., Carlton, C., Risch, M., Surendranath, Y., Chen, S., Furutsuki, S., Yamada, A., Nocera, D. G., and Shao-Horn, Y. J. Am. Chem. Soc. 134, 16959 (2012).
–
Authors
-
Jonathan H. Skone
Department of Chemistry, University of California, Davis
-
Giulia Galli
Department of Chemistry, University of California Davis, Department of Chemistry, Department of Physics, University of California, Davis, University of California - Davis, Department of Chemistry and Department of Physics UC Davis, University of California, Davis, Department of Chemistry and Department of Physics, University of California, Davis, UC Davis, Department of Chemistry and Department of Physics, UC Davis, University of California, Davis, CA