Implementation and test of an Levitov's n-electron coherent source
ORAL
Abstract
Injecting a controlled number of electrons in a quantum conductor opens the way to new quantum experiment. It is known that a voltage biased contact applied on a single mode quantum conductor, such as a perfectly transmitting Quantum Point Contact (QPC), continuously injects single electrons at a rate \textit{eV/h}. Here we consider the injection of n electrons using a short time voltage pulse with $\smallint $\textit{eV(t)dt }$=$\textit{ nh}. When the voltage pulse has a Lorentzian shape, L. Levitov et al. [1] have shown that the n-electron injection is free of extra neutral electron-hole pairs and is a minimal excitation state. We present the first realization of Levitov's proposal. Using periodic voltage pulses applied on a contact of a 2DEG, a coherent train of n-electrons is send to a QPC which acts as an electron beam splitter. By measuring the shot noise resulting from the partitioning of all excitations we demonstrate that Lorentzian pulses are minimal excitation states. This is complemented by energy domain study of the excitations using shot noise spectroscopy and by a time-domain study using shot noise in a Hong-Ou-Mandel like n-electron collision experiment.\\[4pt] [1] H-W Lee {\&} L. Levitov, cond-mat: 9312013; J. Keeling, I. Klich, and L. Levitov, Phys. Rev. Lett. 97, 116403 (2006).\\[0pt] [2] J. Dubois, T. Jullien, P. Roulleau, F. Portier, P. Roche, W. Wegscheider and D.C. Glattli, submitted.
–
Authors
-
D.C. Glattli
Service de l'Etat Condense CEA Saclay, Service de Physique de l'Etat Condense/IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette
-
Julie Dubois
Service de l'Etat Condense CEA Saclay
-
Thibaut Jullien
Service de l'Etat Condense CEA Saclay
-
Preden Roulleau
Service de l'Etat Condense CEA Saclay
-
Fabien Portier
Service de l'Etat Condense CEA Saclay, Service de Physique de l'Etat Condense/IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette
-
Patrice Roche
Service de l'Etat Condense CEA Saclay, Service de Physique de l'Etat Condense/IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette