Dynamical processes in semiconductor nanoclusters

ORAL

Abstract

We study the electronic relaxation processes via electron-phonon interaction in colloidal semiconductor nanoclusters (NCs) using the Liouville-von Neumann equation including a phenomenological Lindblad decay term. The electron-phonon coupling matrix elements used in our study are obtained from frozen-phonon calculations based on \emph{ab initio} density functional theory (DFT). To estimate the phonon lifetime of NCs, which is used in the Lindblad decay term, we perform \emph{ab initio} molecular dynamics simulations of a Si$_{10}$H$_{16}$ cluster and extract the time evolution of the energy of selected vibrational modes from the energy auto-correlation functions. We find vibrational cooling times of around 0.1~ps for high frequency Si-H vibrations, and cooling time of around 1~ps for pure Si modes, which are close to the phonon lifetimes in bulk Si. Analyzing the electronic relaxation processes with the parameters from DFT calculations, we observe a decaying Rabi oscillation with a period of tens of femtoseconds corresponding to the emission/absorption of a phonon. We notice that the Rabi oscillation frequency is proportional to the electron-phonon coupling strength while the decay process is dominated by the phonon lifetime and the energy detuning.

Authors

  • P. Han

    Max-Planck-Institut f\"{u}r Festk\"{o}rperforschung, Heisenbergstra{\ss}e 1, 70569 Stuttgart, Germany, Max-Planck-Institut f\"ur Festk\"orperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

  • Gabriel Bester

    Max-Planck-Institut f\"{u}r Festk\"{o}rperforschung, Heisenbergstra{\ss}e 1, 70569 Stuttgart, Germany, Max-Planck-Institute for Solid State Research, Stuttgart, Max-Planck-Institut f\"{u}r Festk\"{o}rperforschung, Heisenbergstra{\ss}e 1, 70569 Stuttgart, Germany., Max-Planck-Institut f\"ur Festk\"orperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany