Efficient interacting many body similations using GPUs
ORAL
Abstract
Graphics Processing Units (GPUs) provide an ideal tool to study interacting systems using classical machanics with huge speedups for example in molecular dynamics. The quantum-mechanical calculations of many-body systems require additional work, but are feasible using additional degrees of freedom to incorporate quantum-mechanical effects [1]. As an example of the method I show the self-consistent solution to the current transport in a magnetic field can be obtained from a microscopic model with thousands of Coulomb interacting electrons. This yields a microscopic model of the Hall effect [2]. For few electron systems I compare the electronic density evolution based on the GPU classical-quantum model to TD-DFT calculations and discuss prospects of GPUs for solving the Schrodinger equation for many-particles. \\[4pt] [1] Time dependent approach to transport and scattering in atomic and mesoscopic systems, T. Kramer AIP Conf. Proc., 1334, 142 (2011) \\[0pt] [2] Self-consistent calculation of electric potentials in Hall devices, T. Kramer, V. Krueckl, E. Heller, and R. Parrott Phys. Rev. B, 81, 205306 (2010)
–
Authors
-
Tobias Kramer
Universit\"at Regensburg