Microscopic theory for the charge stability diagram of coupled quantum dot systems

ORAL

Abstract

We present a quantitative microscopic theory for the charge stability diagram of coupled quantum dot systems. Using the configuration interaction method we obtain a generalized Hubbard model, from which the charge stability diagram is calculated and compared with experiments. We establish an exact connection between experimental measurements and the microscopic theory, and predict some experimentally observable quantum effects. We also map the classical capacitance model to the extended Hubbard model, and argue that the effect of spin-exchange and various hopping terms cannot be expressed in the capacitance model.

Authors

  • Shuo Yang

    Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742, Condensed Matter Theory Center, Department of Physics, University of Maryland

  • Xin Wang

    Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742, Condensed Matter Theory Center, Department of Physics, University of Maryland, University of Maryland

  • Sankar Das Sarma

    Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742, Condensed Matter Theory Center, Department of Physics, University of Maryland, Univ of Maryland-College Park, Condensed Matter Theory Center, Dept. of Physics, University of Maryland, College Park, MD, CMTC, Dept of Physics, University of Maryland, College Park, Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA, Condensed Matter Theory Center, University of Maryland, College Park, Dep. of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland, University of Maryland, JQI and CMTC, University of Maryland, Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland