Quantum dot charge stability diagram from a generalized Hubbard model

ORAL

Abstract

We develop a theory for the charge stability diagram in solid state quantum dot spin qubits using a general form of the Hubbard model. We argue that the extended Hubbard model (with both on-site and inter-site Coulomb repulsion) is the minimal model to describe the system. The appropriate parameters of the Hubbard model can be read off by comparing our theoretically derived results with the experimental charge stability plots. We make predictions on how the charge stability diagram depends on various parameters of the Hubbard model, especially the spin-exchange and hopping energies.

Authors

  • Xin Wang

    Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742, Condensed Matter Theory Center, Department of Physics, University of Maryland, University of Maryland

  • Shuo Yang

    Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742, Condensed Matter Theory Center, Department of Physics, University of Maryland

  • Sankar Das Sarma

    Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742, Condensed Matter Theory Center, Department of Physics, University of Maryland, Univ of Maryland-College Park, Condensed Matter Theory Center, Dept. of Physics, University of Maryland, College Park, MD, CMTC, Dept of Physics, University of Maryland, College Park, Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA, Condensed Matter Theory Center, University of Maryland, College Park, Dep. of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland, University of Maryland, JQI and CMTC, University of Maryland, Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland