Direct Determination of Energy Level Alignment and Charge Transport at Metal/Alq$_3$ Interfaces via Ballistic-Electron-Emission Spectroscopy (BEES)

ORAL

Abstract

In organic electronic devices, the difference between the electrode work function and the organic lowest unoccupied molecular orbital (LUMO) or highest occupied molecular orbital (HOMO) is a crucial parameter in determining the nature of charge transport. However, experimental determination of LUMO is challenging.\footnote{ J. C. Scott, J. Vac. Sci. Tech, A {\bf21}, 521 (2003).} For the archetypal electroluminescent organic semiconductor tris-(8-hydroxyquinoline) aluminum (Alq$_3$), various techniques gave significantly different HOMO-LUMO gap values.\footnote{I. H. Campbell, D. L. Smith, Appl. Phys. Lett. {\bf74}, 561 (1999); I. G. Hill \emph{et al.} Chem. Phys. Lett. {\bf327}, 181 (2000); S. F. Alvarado \emph{et al.} IBM J. Res. Dev. {\bf45}, 89 (2001).} Using BEES, we directly determined the energy barrier for electron injection at clean interfaces of Alq$_3$ with Al and Fe to be 2.1 eV and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of non-ballistic electrons is consistent with random hopping over the injection barrier. Supported by U.S. DOE Office of Science Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Authors

  • J.S. Jiang

    Argonne National Laboratory

  • J.E. Pearson

    Argonne National Laboratory

  • S. Bader

    Argonne National Laboratory, Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory