Persistence Length of Stable Microtubules

ORAL

Abstract

Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility.

Authors

  • Taviare Hawkins

    University of Massachusetts Amherst

  • Matthew Mirigian

    National Institutes of Health

  • M. Selcuk Yasar

    University of Massachusetts Amherst

  • jennifer Ross

    University of Massachusetts Amherst, UMass Amherst, University of Massachusetts--Amherst