Electron-phonon renormalization of the electronic structure of diamond

ORAL

Abstract

The calculation of band structures from first-principles has reached a high level of accuracy. Calculations combining density-functional theory with many-body perturbation theory often are in good agreement with measurements by photoemission, tunneling, and other spectroscopic probes. While significant efforts have been devoted to improving the description of electron-electron interactions in these calculations, the effect of lattice vibrations has largely been overlooked so far. In this work we study from first principles the electron-phonon renormalization of the band gap of diamond. The calculated temperature dependence of the gap and the broadening of the absorption edge are in excellent agreement with spectroscopic ellipsometry data. Interestingly we find a gap renormalization due to zero-point vibrations as large as 0.6 eV. We discuss the implications of our findings for the electronic structure of other carbon-based bulk materials and nanostructures.

Authors

  • Feliciano Giustino

    University of Oxford, Department of Materials, University of Oxford

  • Steven G. Louie

    University of California, Berkeley and Lawrence Berkeley National Laboratory, Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Lab, UC Berkeley, Department of Physics, U. C. Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California at Berkeley and Lawrence Berkeley National Laboratory, University of California-Berkeley and Lawrence Berkeley National Lab, Department of Physics, University of California at Berkeley, Phys Dept. UC Berkeley, Department of Physics, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, University of California at Berkeley and Lawrence Berkeley National Lab

  • Marvin L. Cohen

    University of California at Berkeley and Lawrence Berkeley National Laboratory, University of California, Berkeley, University of California Berkeley, University of California at Berkeley and Lawrence Berkeley National Lab, Department of Physics, University of California, Berkeley, and Materials Science Division, Lawrence Berkeley National Laboratory