Plasmarons in Quasi-freestanding Epitaxial Graphene

COFFEE_KLATCH · Invited

Abstract

Graphene is a remarkable new electronic material with many unique properties. To realize its promise, it is essential to understand how its charge carriers interact. By measuring the spectral function of charge carriers in quasi-free-standing graphene, we show that at finite doping, the well-known linear Dirac spectrum does not provide a full description of the charge-carrying excitations. We find that there also exist composite ``plasmaron'' particles, consisting of holes coupled to density oscillatons of the graphene electron gas. The Dirac crossing point is resolved into three crossings: the first between pure charge bands, the second between pure plasmaron bands, and the third a ring-shaped crossing between charge and plasmaron bands.

Authors

  • Aaron Bostwick

    Lawrence Berkeley National Laboratory, ALS