Multicompartment and multigeometry nanostructures with block copolymers and kinetic control
COFFEE_KLATCH · Invited
Abstract
The combination of charged block copolymer architecture with the kinetic control of solvent processing offers great flexibility for the creation of new assembled morphologies in solution and outstanding ability to control and manipulate those morphologies. When charged, acidic blocks are present, assembled structures are tunable in a well-defined way via co-assembly of organic bases with adjustable chain structure and control of the solution assembly pathway. A rich variety of polymeric micelles have been made such as toroids, disks, and helical cylinders from poly(acrylic acid)-\textit{block}-poly(methyl acrylate)-\textit{block}-polystyrene (PAA-$b$-PMA-$b$-PS) triblock copolymers in THF/water mixtures with multiamines to complex with the PAA. Both the type and amount of multiamine were found to be critical for formation of specific micelles. Kinetic pathways and temporal stabilities of different micelles and nanoscale aggregates have also been studied. Due to low chain exchange dynamics between block copolymeric micelles in solution, global thermodynamic equilibrium is extremely difficult, if not impossible, to achieve. In our block copolymer/THF/water/multiamine quaternary systems, thermodynamics and kinetics of morphological evolution are governed by three important factors, including chain length of hydrophobic blocks, ratio of THF to water, and the interaction of multiamine with hydrophilic PAA block in the corona. Slow kinetics associated with these factors in solution greatly hinders the system from reaching a global equilibrium. However, by taking advantage of slow kinetics behavior of polymeric micelles in solution, one can purposely produce multicompartment micelles and mulitgeometry micelles by now mixing different PAA-containing block copolymers together but forcing them to ultimately reside in the same nanoscale structure through kinetic processing. While kinetically trapped in common nanostructures, local phase separation can occur producing compartments. This compartmentalization can be used within common micelle geometries to make complex spheres and cylinders or can be used to make new nanostructures such as multigeometry aggregates (e.g. hybrid cylinder-sphere aggregates). All is possible through the kinetic control of the assembly process.
–
Authors
-
Darrin Pochan
University of Delaware, Materials Science and Eng., U. of Delaware, Department of Materials Science and Engineering, University of Delaware