Superfluidity in an Atomic Gas of Strongly Interacting Fermions

COFFEE_KLATCH · Invited

Abstract

What is the benefit of realizing superfluidity in a gas a million times more dilute than air? Such systems consist of well-separated atoms which can be observed and manipulated with the control and precision of atomic physics, and which can be treated with first-principles calculations. By implementing scattering resonances, we have realized the strong-coupling limit of the Bardeen Schrieffer-Cooper (BCS) mechanism and observed a normalized transition temperature of 15\% of the Fermi temperature, higher than in any superconductor. By tuning the strength of the interactions, the BEC-BCS crossover is realized. When the population of the two spin states is imbalanced, pairing is frustrated; and superfluidity is quenched at the Chandrasekhar-Clogston limit. These studies illustrate a new approach to condensed-matter physics where many-body Hamiltonians are realized in dilute atomic gases.

Authors

  • Wolfgang Ketterle

    MIT