pH-dependent Differential Scanning Calorimetry and Dynamic Light Scattering Studies of 21:0 PC and 18:0 PS Lipid Binary System

ORAL

Abstract

Large unilamallar vesicle has been a model system to study many membrane functions. High Tg lipid systems offer many potential biomedical applications in lipid-based delivery applications. While the optimized vesicle functionalities are achieved by Polyethylene Glycol (PEG) polymer, modified PEG and other functional molecule incorporation, however, the host binary lipid system plays the pivotal role in pH-dependent phase transition based lipid vehicular methods. We have investigated a lipid binary system composed of 21:0 PC (1,2-dihenarachidoyl-sn-glycero-3-phosphocholine) and 18:0 PS(1,2-distearoyl-sn-glycero-3-phospho-L-serine). Preliminary studies implementing differential scanning calorimetry shows pH plays key role in temperature shift and thermotropic phase behavior of the binary system. While dynamic light scattering study shows lipid vesicle size is almost independent of pH changes. We will also present pH-dependent thermodynamic parameters to correlate underlying molecular mechanism in relevant pH-range.

Authors

  • Rejwan Ali

    Fordham University