Self-consistent van der Waals density functional: Development and Applications
COFFEE_KLATCH · Invited
Abstract
The inability of density functional theory (DFT), with standard exchange-correlation functionals, to correctly describe van der Waals/dispersion (vdW) interactions has severely limited its applicability to sparsely packed systems, such as organic and biological molecules. Numerous attempts have been made to correct these deficiencies; however, many of them either require extensive reparameterization for each new situation or scale poorly with system size. In this paper, I will discuss the development and implementation of an exchange-correlation functional which correctly incorporates non-local vdW interactions within DFT (vdW-DF)\footnote{M. Dion, H. Rydberg, E. Schr\"{o}der, B. I. Lundqvist and D. C. Langreth, Phys. Rev. Lett., {\bf 92}, 246401 (2004)}. In addition, I will present our recent development of the corresponding exchange- correlation potential ($V_{\rm xc}$)\footnote{T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and David C. Langreth, Phys. Rev. B, {\bf 76}, 125112 (2007)}. The $V_{\rm xc}$ gives us the ability to compute Hellmann-Feynman forces, allowing for structural relaxations and molecular dynamics simulation. Using the $V_{\rm xc}$ I will examine the nature of the van der Waals bond between molecules. Finally, to demonstrate the power of the vdW-DF, I will discuss our relatively large scale application of the functional to study the influence of stacking interactions on the structure and stability of DNA. Here, I will show how these interactions are crucial for defining the twist and base pair separation in DNA and how methyl-nucleobase and methyl-methyl interactions give additional stability to DNA.
–
Authors
-
Valentino R. Cooper
Rutgers University