Microfluidic Fabrication of Bio-compatible Vesicles by Self-assembly in Double Emulsions
ORAL
Abstract
Vesicles are compartments surrounded by bilayered membranes of amphiphilic molecules such as diblock copolymers and phospholipids. To minimize the exposure of their hydrophobic part to water, amphiphilic molecules self-assemble into aggregates of different structures. When the hydrophobic to hydrophilic ratio is close to unity, amphiphiles self assemble into bilayers, which tend to fold themselves into vesicles. These vesicles are useful for encapsulating and transporting actives such as drugs, flavor, and fragrance. To solve the problems of low encapsulation efficiency and large vesicle size distributions afforded by traditional techniques to create vesicles, we engineer a novel route to generate vesicles using monodisperse double emulsions prepared in microfluidics as templates. The double emulsion-to-vesicle transition exhibits different behaviors depending on the properties of the amphiphilic molecules such as the hydrophobic-to-hydrophilic ratio. Using this technique, we have fabricated both bio-compatible diblock copolymer vesicles, also known as polymersomes, and also lipid vesicles with high encapsulation efficiency.
–
Authors
-
Ho Cheung Shum
School of Engineering and Applied Sciences, Harvard University, Harvard School of Engineering and Applied Sciences, Harvard University
-
Jinwoong Kim
Harvard University, Amore Pacific Co. R\&D Center
-
Daeyeon Lee
School of Engineering and Applied Sciences, Harvard University, Harvard School of Engineering and Applied Sciences, Harvard University
-
David Weitz
School of Engineering and Applied Sciences, Harvard University, Harvard University, Department of Physics and HEAS, Harvard University, SEAS, Harvard University, Harvard School of Engineering and Applied Sciences, and Department of Physics, Harvard University, HSEAS, Harvard University